

Pump Cavitation Characteristic & Performance Maps

Summary

Goals:

Verify cavitation prediction in a centrifugal pump through AxSTREAM's 1D code, and compare the performance maps obtained using 3D CFD and AxSTREAM.

Requirements:

Determine cavitation characteristic of the pump using 3D CFD, including critical points:

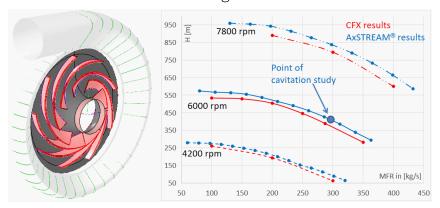
- 1) Cavitation inception (h_i)
- 2) Head drop appearance (h₁)
- 3) Drop in pressure of 3% ($h_{3\%}$)
- 4) Critical cavitation (h_s)

Compare AxSTREAM's NPSH_R prediction with the 3D CFD results.

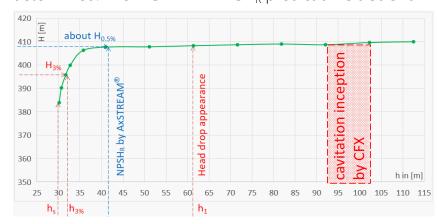
Parameters:

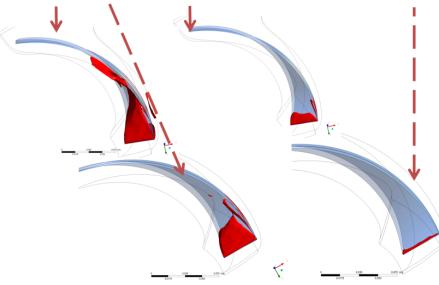
Study Object = Centrifugal Water Pump Impeller Diameter = 328 mm Rated Mass Flow Rate = 287 kg/s Rated Shaft Speed = 6000 RPM Rated Total-Total Head = 424 m

Constraints:


The inlet pressure is varied as means to obtain a cavitation characteristic. MFR and shaft speed are constant.

Results of the Study:


The point of NPSH_R determined by AxSTREAM lies to the right of the drop in head (3%). This provides a margin for cavitation and ensures that the NPSH_R point does not lie in the proximity of the critical cavitation point. The performance map obtained from the AxSTREAM results is in good agreement with the 3D CFD results.


Pump Analysis

Comparison of the pump performance map is based on the rapid results from AxSTREAM's 1D models and a 3D CFD method. Results are in close agreement.

Based on the results of the 3D CFD calculation, the cavitation characteristic is plotted, and the critical points are determined. The AxSTREAM NPSH_R prediction is also shown.

